ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ ПРОБЛЕМ МЕХАНИКИ ИМ. А.Ю. ИШЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

А.В. ЕГОРОВ, Р.И. НИГМАТУЛИН, А.Н. РОЖКОВ, Е.С. ЧЕРНЯЕВ

ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ ТРАНСПОРТЕ ГЛУБОКОВОДНЫХ ГИДРАТОВ МЕТАНА В НЕГЕРМЕТИЧНОМ КОНТЕЙНЕРЕ

Препринт № 1009

Москва 2012 г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ ПРОБЛЕМ МЕХАНИКИ ИМ. А.Ю. ИШЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

А.В. ЕГОРОВ, Р.И. НИГМАТУЛИН, А.Н. РОЖКОВ, Е.С. ЧЕРНЯЕВ

ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ ТРАНСПОРТЕ ГЛУБОКОВОДНЫХ ГИДРАТОВ МЕТАНА В НЕГЕРМЕТИЧНОМ КОНТЕЙНЕРЕ

Препринт № 1009

А.В. Егоров¹, Р.И. Нигматулин¹, А.Н. Рожков^{1,2}, Е.С. Черняев¹

Тепловые эффекты при транспорте глубоководных гидратов метана в негерметичном контейнере - Препринт ИПМех РАН № 1009, 2012, 25 с

В ходе экспедиции РАН «Миры на Байкале. 2008-2010» проведены глубоководные эксперименты по транспорту со дна озера на поверхность крупных фрагментов гидратов метана, отобранных механически из донных залежей, и гидратной пены, сформированной всплывающими со дна метановыми пузырями. Гидратные образцы обоих типов поднимались в контейнерах, в которых крышка и стенки непроницаемы, а дно отсутствовало. При движении от дна озера к поверхности контейнера с гидратной пеной происходило вытеснение воды из контейнера газом, который присутствовал в пене и который расширялся по мере снижения гидростатического давления. Температура газа в контейнере с пеной непрерывно уменьшалась до глубины 800 м, затем наблюдался её небольшой рост. В контейнере с крупными фрагментами существенного изменения температуры не наблюдалось. Однако, как только контейнеры выше границы 30НЫ термодинамической устойчивости поднялись гидратов, температура в обоих контейнерах резко упала. Достигнув отрицательных значений, температура также резко стабилизировалась и не изменялась далее до момента достижения поверхности. Снижение температуры в пене в течение подъёма объясняется охлаждением газа за счёт совершения работы против сил гидростатического давления, а падение температуры на границе зоны термодинамической устойчивости гидратов связано с поглощением тепла при разложении гидрата.

¹ Институт океанологии им. П.П. Ширшова РАН

² Институт проблем механики им. А.Ю. Ишлинского РАН

МЕТАНОВЫЕ ГИДРАТЫ НА БАЙКАЛЕ

Гидрат метана — твёрдое, похожее на лёд, кристаллическое соединение метана и воды (в молекулярном отношении $\sim 1/6$), которое может образовываться и сохраняться только при пониженной температуре и высоком давлении. Именно в таких термодинамических условиях находится бoльшая часть вод озера Байкал.

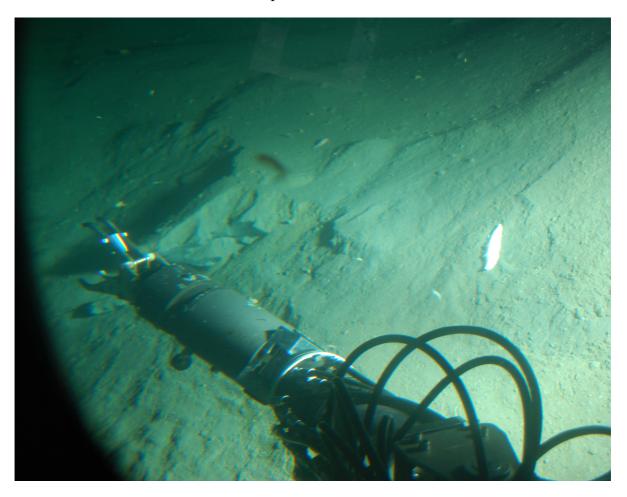


Рис. 1. Монолиты гидрата метана под тонким слоем ила на грязевом подводном вулкане «Санкт-Петербург», наблюдаемые через иллюминатор ГОА «Мир».

В 2009 году в ходе экспедиции «Миры на Байкале» на подводном грязевом вулкане «Санкт Петербург» на глубине 1400 м открыта протяжённая монолитная залежь метанового гидрата [2-5] - рис. 1. В погружениях глубоководного обитаемого аппарата (ГОА) «МИР»

удавалось взломать монолитную залежь манипуляторами ГОА и отобрать большие фрагменты гидрата. Также удалось поднять некоторое количество отобранного гидрата на поверхность [4]. Трудность доставки гидрата со дна на поверхность состоит в том, что гидрат термодинамически устойчив только до глубины ~ 300 - 400 м, выше которой он интенсивно разлагается на газ и воду. Для подъёма использовался негерметичный контейнер без дна, типа перевёрнутого ведра. На глубине контейнер наполнялся фрагментами гидрата, которые, имея положительную плавучесть, прижимались силой Архимеда к потолку контейнера. Заполненный контейнер устанавливался в бункер ГОА. При подъёме контейнер наполнялся газом, который изначально мог находиться в контейнере и расширялся по мере снижения гидростатического давления, а главное газом, который образовался в результате разложения гидрата, когда ГОА пересёк границу устойчивости. При движении контейнера термодинамической неустойчивости, гидрат оказывался газовой атмосфере, которая затрудняла теплообмен между гидратными фрагментами и окружающей средой. Так как разложение гидрата происходит с поглащением тепла, то в условиях слабого теплообмена гидрат охлаждался, образующаяся при разложении вода тут же замерзала, и гидрат покрывался ледяной оболочкой. Оболочка замедляла разложение, что есть известный эффект самоконсервации гидрата [6]. Таким образом, благодаря явлениям, первопричиной которых является сам гидрат, удавалось поднять метановый гидрат на поверхность в высокой степени сохранности. Полученный опыт показывает, что основой эффективности будущих технологий транспорта газовых гидратов с глубоководных месторождений [7] является качество управления тепловыми процессами при движении контейнеров с гидратами.

Другой объект изучения в данной работе — это твёрдая гидратная пена, а также тепловые эффекты, связанные с её транспортом. На Байкале

такая пена образуется из пузырей метана на глубине 1400 м [3]. Когда на пути потока пузырей оказывается ловушка, типа перевёрнутого стакана, то в ловушке пузыри при соприкосновении не объединяются в единый пузырь, как в обычной чистой жидкости, а прикрепляются друг к другу и формируют пену. Единственное объяснение причины, по которой пузыри не разрушаются при контакте с другими пузырями, — это образование гидратной оболочки на поверхности пузырей. Наблюдаемое формирование пены — есть доказательство образования гидрата на поверхности глубоководных пузырей в благоприятных термодинамических условиях [2, 3].

При движении ловушки с пеной к поверхности гидростатическое давление падает, газ в твёрдой пене расширяется, выходит из неё и заполняет свободное пространство ловушки, причём твёрдая гидратная структура внешне не изменяется, а температура в ловушке уменьшается всего на несколько градусов. Измерениями установлено, что газ расширяется в точном соответствии с законом Бойля-Мариотта, что свидетельствует о сохранении массы газа в ловушке. Значит, в контейнере не происходит образования или разложения гидрата, иначе масса газа в контейнере изменялась бы. Вместе с тем, остаётся открытым вопрос о механизмах, которые управляют малыми, но конечными изменениями температуры при движении ловушки с гидратной пеной.

Настоящая работа предпринята с целью установления особенностей массо- и теплообмена глубоководных гидратных формирований при их подъёме со дна на поверхность в негерметичных контейнерах – прообразах будущих транспортных систем добычи гидрата.

КОНТЕЙНЕРЫ ДЛЯ ГИДРАТОВ

В исследованиях использовались два типа негерметичных контейнеров.

Контейнер «Телевизор», прототипом которого является контейнер [4], предназначен для исследования транспорта крупных фрагментов гидрата, отобранных из монолитной залежи. Он выполнен из плексигласа в виде прозрачного параллелепипеда размером 297×210×210 мм – рис. 2. По бокам контейнера прикреплялись два груза для сохранения отрицательной плавучести при наполнении контейнера газом. Под крышей контейнера крепился термодатчик ТНК производства компании nke INSTRUMENTATION (Франция), основное предназначение которого измерение температуры в гидросфере или грунте. Чувствительность термодатчика в диапазоне температур $0 \div 25$ °C составляет 0.003 °C. находится посередине Измерительный элемент штыря. Измерения температуры осуществлялись в течение всего погружения с интервалом 1 минута. Данные сохранялись в памяти датчика, а при поднятии датчика на борт судна-носителя копировались В компьютер при помощи дистанционного радио-считывателя. Ещё один датчик температуры, выполненный Е.С. Черняевым на базе терморезистора, монтировался на поверхности небольшой решётчатой подставки, устанавливаемой на дно бункера ГОА. Подставка предназначалась для лучшей теплоизоляции гидрата. Загруженный контейнер устанавливался в бункер таким образом, что данная подставка оказывалась внутри контейнера. В заполненном контейнере газом подставка удерживала фрагменты гидрата приподнятом состоянии, т.е. выше уровня воды в контейнере, так что гидраты полностью находились в газовой атмосфере. Сигнал датчика Е.С. Черняева подавался внутрь ГОА и записывался. Таким образом, датчики измеряли температуру в верхней и нижней частях «Тепловизора».

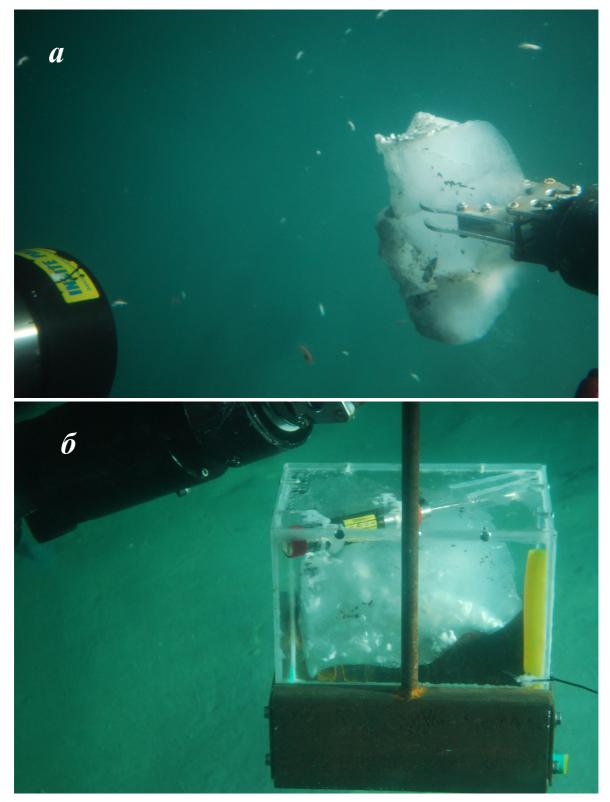


Рис. 2. a - фрагмент метанового гидрата, отломанный манипулятором ГОА от монолита. δ - контейнер «Телевизор» с помещённым в него фрагментом метанового гидрата. Под крышей контейнера закреплён термодатчик ТНР. Внизу — грузы для придания отрицательной плавучести.

Опыты по транспорту гидрата в контейнере состоялись 11 августа 2010 года на подводном грязевом вулкане «Санкт Петербург» в точке с координатами 52°52.90 с.ш., 107°09.94 в.д. Контейнер наполнялся фрагментами гидрата на глубине 1400 м путём взлома монолитной гидратной залежи при помощи манипулятора ГОА. Удерживаемый манипулятором фрагмент перемещался под контейнер, а затем отпускался. Отпущенный гидратный фрагмент всплывал и оказывался внутри контейнера. В целом технология заполнения контейнера не отличалась от технологии заполнения контейнера «Ведро» в более ранних погружениях [4].

Контейнер «Термо» (в работе [2] называемый ловушка «Термо») предназначен для сбора метановых пузырей, всплывающих со дна, а также для измерения температуры в контейнере в процессе сбора газа и всплытии. Контейнер «Термо» представлял собой цилиндрическую плексигласовую трубу размером 70×360 сверху MM, закрытую плексигласовой крышкой (рис. 3). Для ускорения сбора пузырей внизу крепился прозрачный пластиковый раструб. устанавливался такой же термодатчик ТНК, что и в контейнере «Телевизор.

Опыты по транспорту гидрата в контейнере «Термо» состоялись 09 августа 2010 года на подводном грязевом вулкане «Санкт Петербург» на глубине 1400 м в точке с координатами 52°53.09 с.ш., 107°10.05 в.д. Для сбора пузырей контейнер располагался над местом выхода пузырей со дна озера. Пузыри заполняли контейнер, причём благодаря сформировавшейся гидратной оболочке пузыри при соприкосновении не коалесцировали, а соединялись в твёрдую гидратную пену. Перед всплытием контейнер заполнялся пеной примерно наполовину, причём чувствительный элемент термодатчика (в середине штыря) оказался внутри гидратной пены. В ходе

всплытия газ в контейнере расширялся и вытеснял воду. Процесс записывался видеокамерой, установленной на одном из манипуляторов.



Рис. 3. a - контейнер «Термо» перед погружением. Внутри закреплён термодатчик ТНР. Чувствительный элемент датчика находится в середине штыря. δ - контейнер «Термо» в процессе сбора метановых пузырей. В верхней части контейнера из отобранных пузырей образовалась твёрдая гидратная пена. Цифры в нижней части кадра — фрагмент рабочего тайм-кода.

На рис. 4 представлены данные измерения температуры в контейнерах «Телевизор» и «Термо», а также в свободной гидросфере при всплытии.

a 6

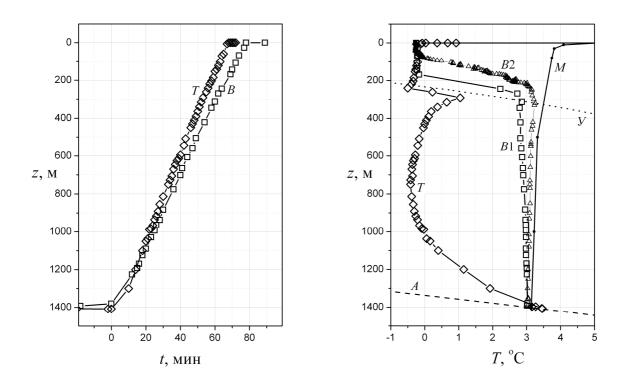


Рис. 4. a — траектории всплытия контейнеров «Термо» (T) и «Телевизор» (B). δ — изменение температуры с глубиной по данным внешнего термодатчика ГОА «Мир» (M), в контейнерах «Термо» (T) и «Телевизор» (B1 и B2 — данные верхнего и нижнего термодатчиков) и согласно адиабате Пуассона (A). Граница зоны устойчивости гидратов, как функция температуры (Y).

ГАЗ В КОНТЕЙНЕРАХ В ЗОНЕ УСТОЙЧИВОСТИ ГИДРАТОВ

Как показывают наблюдения и графики рис. 4, старт подъёма ГОА с пенным контейнером «Термо» 9 августа 2010 года в 20:37 вызвал снижение температуры В контейнере. Охлаждение немедленное продолжалось на глубинах, лежащих существенно ниже границы зоны устойчивости. Наблюдаемое снижение температуры, очевидно, вызвано совершением работы расширяющимся газом против силы гидростатического давления. Вместе с тем, процесс далёк от того, чтобы быть адиабатическим. Действительно, на рис. 46 представлено изменение температуры с глубиной для адиабатического процесса, для описания которого использовано уравнение Пуассона

$$T = T_0(z/z_0)^{1/\kappa-1},$$
 (1)

где T - текущая абсолютная температура газа, T_0 - абсолютная температура газа в момент старта ГОА со дна, z — текущая глубина, z_0 - глубина старта ГОА, κ =1.31 - показатель адиабаты для метана. Очевидно, адиабатическое описание не соответствует наблюдениям. Внутренняя энергия газа расходуется на совершение работы, но тепловые потери немедленно компенсируются потоком тепла из окружающей среды через стенки контейнера и границу газа с водой. Изменение температуры в контейнере невелико и контролируется чрезвычайно малой разностью тепла, теряемого из-за совершения работы, и тепла, поступающего из окружающей среды.

Неожиданным результатом является появление минимума в зависимости температуры от глубины в районе 800 м. Для установления возможных причин появления минимума рассмотрим на оценочном уровне термодинамику расширения газа в контейнере.

Согласно 1-му началу термодинамики, изменение внутренней энергии системы dU, которая зависит только от абсолютной температуры T, определяется подводом/отводом тепла δQ и совершаемой работой p dv:

$$dU=\delta Q-pdv$$
,

где p – давление, v - объём.

Полагая, что внутренняя энергия газа в контейнере пропорциональна температуре $U \propto T$, скорость отвода/подвода тепла пропорциональна площади поверхности газового пузыря s и разности температур газа и окружающей среды $\mathrm{d}Q/\mathrm{d}t \propto -(T-T_0)S$, изменение температуры $\Delta T \equiv T-T_0$

невелико $|\Delta T| << T_0$, получим приближённое уравнение изменения температуры

$$d\Delta T/dt = -\alpha_1 s\Delta T + (\alpha_2/p)(dp/dt),$$

где α_1 , α_2 — параметры (положительные), зависящие от начального термодинамического состояния газа в контейнере, а параметр α_1 кроме того пропорционален теплопроводности стенок контейнера, $\mathrm{d}p/\mathrm{d}t$ - скорость падения гидростатического давления при подъёме ГОА.

Полагая далее, что подъём ГОА происходит с постоянной скоростью u_0 =-dz/dt, а давление на больших глубинах изменяется как p= ρgz , получим уравнение изменения температуры с глубиной

$$d\Delta T/dz = (\alpha_1/u_0)s\Delta T + \alpha_2/z. \tag{2}$$

Первый член в правой части уравнения описывает изменения температуры за счёт теплообмена с окружающей средой, второй — за счёт совершения газом работы. При увеличении скорости всплытия u_0 влияние теплообмена ослабевает, и газ охлаждается сильнее. Граничные условия, очевидно, имеют вид: $z=z_0$, $\Delta T=0$, $s=s_0$, $v=v_0$, где z_0 — глубина в момент старта подъёма, а s_0 и v_0 - площадь поверхности пузыря и объём газа в момент старта.

Для качественного анализа изменения кривой температуры, введём безразмерные переменные: $Z=z/z_0$, $S=s/s_0$, $V=v/v_0$, $\Phi=\Delta T/\alpha_2$, в которых уравнение (2) принимает вид:

$$d\Phi/dZ = BS\Phi + 1/Z, \qquad (3)$$

а граничные условия Φ =0, Z=1, S=1, V=1. Здесь B= $z_0s_0\alpha_1/u_0$ – есть параметр задачи, пропорциональный теплопроводности на границе объёма и обратно пропорциональный скорости всплытия.

Уравнение замыкается, если есть связь площади S с координатой Z. Такая связь может быть установлена через соответствующее изменение объёма. Действительно, изменение площади поверхности S при изменении объёма V зависит от формы контейнера и характера его заполнения газом. Так, например, если газом заполнен тонкий слой в плоском сосуде, например в контейнере «Телевизор», то при изменении объёма площадь не изменяется S=1. При расширении сферического объёма [1] $S=V^{2/3}$, а при расширении газа в тонкой вертикальной трубе, типа контейнера «Термо», S=V. Так как в силу закона Бойля-Мариотта объём газа обратно пропорционален глубине $V=Z^{-1}$, то для перечисленных 3-х случаев, имеем следующие зависимости изменения площади от глубины: S=1, $S=Z^{2/3}$ и $S=Z^{-1}$. На рис. 5 представлены решения уравнения (3) для S=1, $S=Z^{-1}$, $S=Z^{-2}$ и обсуждаемого далее случая изменения площади газового пузыря в контейнере «Термо». Графики $\Phi(Z)$ показывают, что пока площадь пузыря в контейнере растёт не слишком быстро с уменьшением глубины (S=1, $S=Z^{-1}$) температура в контейнере монотонно падает. При переходе к случаю глубины $(S=Z^2)$ более быстрого роста площади с уменьшением наблюдается появление минимумов на температурной зависимости $\Phi(Z)$. Физическое объяснение появление минимумов – простое: при резком увеличении поверхности теплообмен с окружающей средой облегчается, температура в контейнере стремится к равновесию с температурой окружающей среды, а отбор тепла за счёт расширения газа не в силах конкурировать с потоком тепла извне.

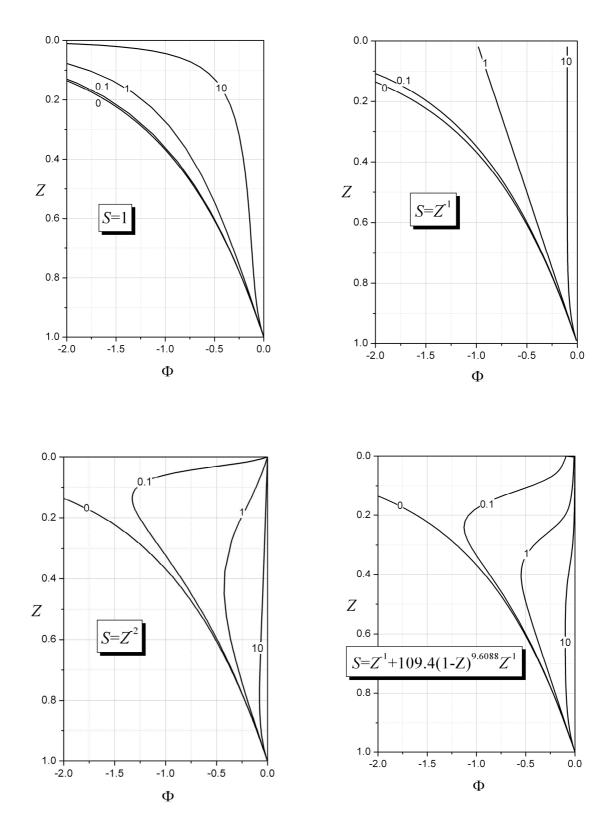


Рис. 5. Решения уравнения (3) для разных зависимостей площади поверхности газового пузыря S от глубины Z и значений параметра B (показаны на графиках).

Путём обработки видеозаписи процесса всплытия контейнера «Термо» установлена траектория движения мениска в контейнере. На основе этих данных рассчитана зависимость изменения объёма газа в контейнере с глубиной (см. рис. 13 в работе [2]). Данные для траектории мениска также позволили восстановить аналогичную зависимость для площади поверхности. На рис. 6 показана искомая функция.

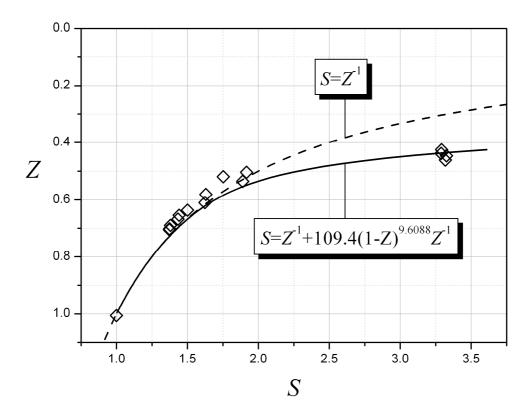


Рис. 6. Изменение площади поверхности газового пузыря S в контейнере «Термо» с глубиной Z. На глубине Z_1 =0.5714 мениск переместился из цилиндрической части контейнера «Термо» в расширяющуюся часть.

Пока мениск находится в цилиндрической трубе, площадь изменяется обратно пропорционально глубине $S=Z^{-1}$. Как только мениск выходит в расширяющуюся часть контейнера (раструб), площадь газового пузыря начинает расти значительно быстрее — рис. 7. Видеокадры показывают, что переход мениска в раструб произошёл на глубине около z_1 =800 м (Z_1 = 0.5714). Примерно с этой глубине наблюдается отклонение

от закона $S=Z^1$ и для описания используется аппроксимация $S=Z^1+109.4(1-Z)^{9.6088}$, подстановка которой в уравнение (3) приводит к появлению минимума на кривых температуры — рис. 5. Выход мениска в раструб эквивалентен появлению дополнительного радиатора, интенсифицирующего теплообмен и выравнивающего температуры внутри и вне контейнера. Положение минимума на кривой не связано жёстко с глубиной входа мениска в раструб Z_1 , но минимум кривой всегда располагается выше этой глубины. Естественно, что до момента поднятия на эту глубину кривые $\Phi(Z)$ для $S=Z^1$ и $S=Z^1+109.4(1-Z)^{9.6088}$ совпадают.

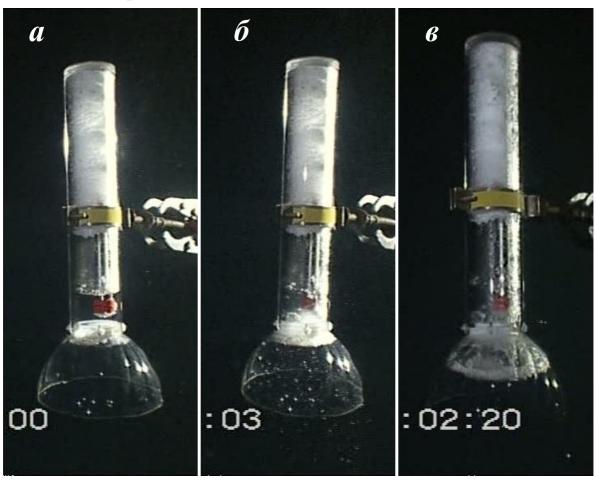


Рис. 7. Перемещение мениска при всплытии по цилиндрической части контейнера «Термо» и его выход в расширяющуюся часть (раструб). Фотографии a-в сделаны на глубинах 966, 780 и 625 м. На мениске образуются частицы гидрата, которые при лёгком встряхивании контейнера движением воды перемещаются с поверхности мениска внутрь водной среды под мениском.

При поднятии контейнера «Телевизор» оба датчика записали монотонное изменение температуры с глубиной, причём верхний показал более сильное снижение температуры, чем нижний. При поднятии в контейнере, вероятно, присутствует некоторое количество газа, которое могло быть доставлено в контейнер пузырями, всплывающими со дна при отборе фрагментов гидрата манипуляторами ГОА. Расширение данного небольшого количества газа при подъёме дало небольшое падение температуры в газовом объёме, с которым контактировал верхний термодатчик. Нижний термодатчик во время подъёма, по-видимому, находился в водной среде и его показания, поэтому, незначительно отличаются от температуры окружающей среды. Монотонность кривой температуры предсказывается теоретической моделью (3) для плоского слоя газа S=1 (рис. 5).

Сопоставление теоретических кривых для разных значений B ($\propto u_0^{-1}$) на рис. 5 показывает, что при небольших отклонениях температуры в контейнере от температуры в среде уровень падения температуры в контейнере приблизительно линейно растёт со скоростью всплытия u_0 . Используя данную закономерность можно управлять температурой в контейнере, меняя скорость всплытия u_0 . В частности, увеличивая скорость всплытия, можно затянуть наступление условий для разложения гидрата. Действительно, согласно известной эмпирической формуле, связывающей критическую глубину устойчивости гидрата z_* с абсолютной температурой воды T [5, 6],

$$T=7056.8/(26.718-\ln(((z_*)*10^3*9.81+10^5)/10^6)),$$

граница устойчивости гидрата в водоёме (глубина z_*) приближается к поверхности с падением температуры так, как это показано на рис. 4δ . Например, при падении температуры до -10 0 C, критическая глубина оказывается равной всего $z_*=90$ м. Путём увеличения скорости всплытия, а

также повышением теплоизоляции контейнера, можно значительно снизить температуру в контейнере и донести гидрат до более высоких горизонтов в водоёме без разложения.

Таким образом, наблюдениями за гидратными контейнерами при всплытии в зоне устойчивости гидратов установлено, что при наличии газа контейнере, расширение вызывает его заметное охлаждение контейнера. содержимого Расчёты показывают, что охлаждение усиливается с ростом скорости подъёма контейнера и вместе с тем ослабевает при снижении теплоизоляции контейнера. Благодаря охлаждению граница термодинамической устойчивости гидрата смещается в область меньших давлений, т.е. приближается к поверхности водоёма.

ГАЗ В КОНТЕЙНЕРАХ ЗА ГРАНИЦЕЙ ЗОНЫ УСТОЙЧИВОСТИ ГИДРАТОВ

При пересечении отметки глубины 300 метров наблюдался резкий сброс температуры в обоих контейнерах до уровня -0.25 °C, после которого температура в контейнере стабилизировалась и оставалась практически постоянной до самого всплытия (рис. 8). Среднее значение температуры по трём датчикам -0.261 ± 0.007 0 C, стандартное отклонение 0.053 0 C. Предполагается, что на глубине ~ 300 метров гидрат оказывается в термодинамической неустойчивости И начинается интенсивное разложение, которое идёт с поглощением тепла, что вызывает падение температуры в контейнере. Вместе с тем, охлаждение до отрицательной температуры (по Цельсию) вызывает замерзание освобождающейся при разложении воды. Поверхность гидрата покрывается ледяной оболочкой, которая препятствует разложению. Возникает известный эффект самоконсервации гидрата [6]. По-видимому, далее система сама себя регулирует и поддерживает постоянство температуры на уровне -0.25 ⁰C благодаря тому, что как только образуется небольшое протаивание, происходит ускорение разложения и охлаждение системы до равновесного уровня. Нахождение гидрата в газовой среде - $0.25~^{0}$ С не способствует быстрому протаиванию, которое, вероятно, происходило бы быстрее в свободной атмосфере. Кроме того, не прекратилось охлаждение за счёт расширения газа.

Рис. 8. Увеличенный фрагмент графика рис. 4 δ . Данные для датчиков T и B1 на глубине z=0 получены с интервалом 1 мин.

В контейнере «Телевизор» верхний термодатчик быстрее отреагировал на вступление в зону неустойчивости, чем нижний – рис. 4б. Показания верхнего датчика достигли уровня 0^{-0} C на глубине 169 м, показания нижнего изменялись медленнее и достигли отрицательной температуры лишь на глубине 80 м. Вероятно, временной сдвиг в термодатчиков процесса показаниях есть отражение наполнения контейнера «Телевизор» газом, образующегося в результате разложения гидрата. Верхний термодатчик изначально контактировал с газовым объёмом и практически мгновенно реагировал на изменение его температуры. Нижний термодатчик первоначально находился под водой и лишь после того, как газ от разлагающегося гидрата вытеснил воду из контейнера, смог оказаться в газовой фазе, что, вероятно, произошло на глубине 80 м. До этого момента датчик измерял температуру воды, которая могла охлаждаться расширяющимся в контейнере газом.

Как только ГОА всплыл на поверхность, температура в контейнерах начала быстро расти из-за относительно высокой температуры окружающей воды ($\sim +10~^{\circ}$ C) и прекращения оттока тепла за счёт расширения газа.

Благодаря эффекту самоконсервации, низкой теплопроводности газовой среды и, возможно, охлаждению за счёт расширения газа, оба контейнера сохранили в определённой степени своё содержимое до прихода на поверхность – рис. 9, 10.

Рис. 9. Контейнер «Термо» спустя 3 минуты после всплытия ГОА на поверхность.

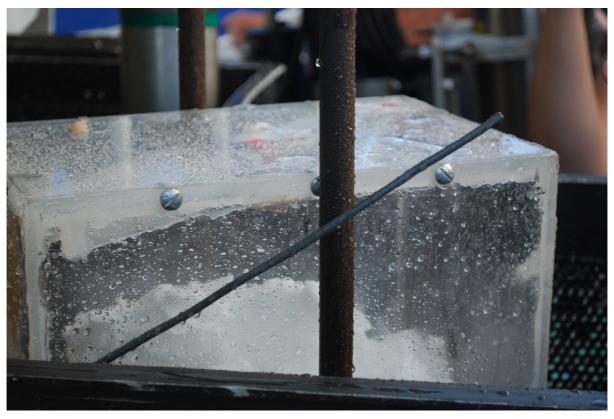


Рис. 10. Контейнер «Телевизор» с метановым гидратом внутри поднят на поверхность.

ЗАКЛЮЧЕНИЕ

Исследования показывают, что путём предварительного наполнения контейнера газом, минимизации поверхности контейнера, снижения теплопроводности стенок контейнера, а, главное, увеличения скорости подъёма контейнера можно существенно приблизить к поверхности момент начала разложения отобранных гидратов. В момент начала разложения гидрата в контейнере, наполненном газом, наблюдается сброс вызванный интенсивным поглощением температуры, разложении. Температура снижается до отрицательных значений, после чего возникает эффект самоконсервации - покрытие льдом поверхности гидрата. В результате первоначально высокая скорость разложения гидрата значительно снижается и температура стабилизируется. В таком состоянии гидрат может быть поднят на поверхность. Предполагается, что благодаря предложенным мерам удастся заметно снизить потери гидрата метана при транспортировке в простейшем негерметичном контейнере.

Работа выполнена при финансовой поддержке Программы фундаментальных исследований Президиума РАН № 21, Фонда содействия сохранению озера Байкал, и госконтракта № 16.420.11.0013.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Базилевский А.В., Мейер Д.Д., Рожков А.Н.* Динамика сферической микрокаверны в полимерной жидкости // Изв. РАН. Механика жидкости и газа. 2003. № 3. С. 3-16.
- 2. Егоров А.В., Нигматулин Р.И., Римский-Корсаков Н.А., Рожков А.Н., Сагалевич А.М., Черняев Е.С. Разрушение глубоководных метановых пузырей // Океанология. 2010. Т. 50. № 4. С. 505–514.
- 3. *Егоров А.В.*, *Нигматулин Р.И.*, *Рожков А.Н.*, *Сагалевич А.М.*, *Черняев Е.С.* О превращениях глубоководных метановых пузырей в гидратный порошок и гидратную пену // Океанология. 2011. Т. 51. № 6. (в печати).
- 4. *Егоров А.В.*, *Римский-Корсаков Н.А.*, *Рожков А.Н.*, *Черняев Е.С.* Первый опыт транспорта глубоководных гидратов метана в негерметичном контейнере. // Океанология. 2011. Т. 51. № 2. С. 376–382
- 5. *Егоров А.В., Рожков А.Н.* Формирование залежей газовых гидратов в подводных грязевых вулканах // Изв. РАН. Механика жидкости и газа. 2010. № 5. С. 103–113.
- 6. *Истомин В.А., Квон В.Г.* Предупреждение и ликвидация газовых гидратов в системах добычи газа. М.: ООО «ИРЦ ГАЗПРОМ», 2004. 506 с.
- 7. Macdonald I.R., Leifer I, Sassen R, Stine P, Mitchell R. Guinasso N. jr. Transfer of hydrocarbons from natural seeps to the water column and atmosphere // Geofluids. 2002. V. 2. P. 95–107.

А.В. Егоров, Р.И. Нигматулин, А	.Н. Рожков,	, Е.С. Черняев
---------------------------------	-------------	----------------

«Тепловые эффекты при транспорте глубоководных гидратов метана в негерметичном контейнере»

Подписано к печати 07.02.2012 Заказ № 3-2012 Тираж - 30 экз.

Отпечатано на ризографе Института проблем механики им. А.Ю. Ишлинского РАН 119526, Москва, пр-т Вернадского 101, к.1